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Calogero recently proposed a me" and ver, powerful method for the 

solution of Sturm-Liouville eigenvalue problems based on Lagrangian 

differentiation. In this paper, I present 8ome results of a numerical 

investi&stioo of Cslogero-a method for physically interesting problems. 

I then show that one can 'invert' hia differentlatloh technique to 

obtain a flexible, factort.xlly convergent Lagrangian integration echeme 

which should be useful in . variety of problems, c.g-. solution of 

integral equations. 
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In e recent paper(I). Cslogero proposed a new and very powerful 

method for the solution of Sturm-Llouvllle elgenvalue problems. In his 

approach. the operators L and d/dx in the dlffeceoclal equatloo are 

replaced by special n x II matricesX and iZ. and the elgenvalues and 

eigenveccors are determined by matrix methods. Calogero shows that 

under reasonable assumptions (a subset of) the matrix elgenvalues 

converge factoriallg fast to the true elgenvalues. ~O.,/~I-(xm/Zo) u-2 . 

In this paper, I present some results of e numerical lavestlgatlon of 

Calogero-s method for physically interesting problems. Its rem&able 

success suggested that one might -invert- the differentiation scheme to 

ohtaln e flexible, factoriallg convergent integration scheme useful la 

II variety of problems. e.g., integration with mparsc data or the 

8oLutioa of integral or integrodlffcrentlal equationa (my orlglaal 

motlvatlon). I present the lntegratlon scheme and some tests of its 

accuracy here. 

Calogero’s work(‘) is based on the observetloo that o I a paCrfr 

operetors X and Adefined lo terms of n arbitrary points XI.. . .s by 

(1) Xfj - =ibij. 

(2*) 

l tiafy the Eelsenberg elgebre of x end d/dx when actlng on the finite 

hels I'"', I - O.....n-1) with ('-', 

(3) 5 
Cm) - +l,(r,). ro.....n-1. 
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end 

(4) n,(x) - ;t (X:-Xj). 
I-’ $1 

SpecifLcally(3) 

(5) L.(“’ ‘5 W), 0 < m < n-2. 

(6) 2 x(m) - m x(=+-l), 0 < P < n-l. 
-- 

These results are closely connected to Lagraagian iaterpolation 

t21. The x-s are the Lagrange Interpolscion palynomisls f5). Z iS 

given in terms of I by 

(7) 5 i 
- & 1x-a n,(x,) 

and the x-s give a matrix representation of the mnomials xm. 

(8) P - (n(x), ‘I b)) - 7 
- - i-1 

xy x,(x)/n,(x,) * 

P4ore'geaerally, the (unique) polynomial of degree n-l vhfch is equal to 

e function f(x) et Xl,...,\ is 

(9) PC=) -‘(x.P). ,Pr - ~f(x,vx,(x,)- 
-- 

This polynomial approximates f(x) lo the sexme thet(5) 
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(10) f(r) - F(x) + R,, 

(11) Km - f(n) (it) $ (x-x,)/n!. x1 < 5 < x*. 

For functloos vfth bounded derivatives. the Lagrange ioterpolatloo 

formula f(x) = F(x) thus gives a factorlally convergent approxlmatlon. 

&I < (paxif (~)l)lx,-r,~‘/of . The formulas for Lagraogian 

lntegratfon(5) and dlffereatiatloa(2’5) ere obtained by 

lntegrqting or differentlatlng the polynomial.F(x), and have similar 

error terms. 

Calogero’s procedure in ref. 1 is to map the differential equetlon(6) 

(12) b(X) 
d2 -.[r2(x) -+ a,(x) -& + ao(x)l~W 

dx2 
- AU(X). e‘ x ‘ b. 

to the PatrLx equetlon 

(13) A” - [s2(X)Z2 ‘.sl(y- + “,J~>l~ - iz 
- -- 

by the substitutions x + X, d/dx -4, with ~l..-.*~ t(a,b). For 

operators A with polynomial eigeafunctions. the n elgenvalues 

i;j.j-l . . ..n of_?Iere equal to the lowest II elgenvaluea AJ of A C7). and 

the eigenfunctions art related by v - w(xI)/~l(xI). v (x) - (x(I).Y ).’ 
- - 

j-l....n. It is therefore plausible that the matrix equation will also 

give good epproximatlons for some of the lowest elgenvalues and 

eigenvtctors of A for mare general problems. Cslogero in fact 

l *tbetc* the ret= OK coe..ryaee of l lgtowluem of A to eotr.q,mdl,xg 

l ig*arrluem of A. with t?u rmmalt quoted above. 
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There are some subtleties lo this procedure which cause 

complications in practice. The matrices3 are usually oat polynomial 

and carry Y off coy finite basis (x ,‘“I]. There is coosequently no 

reeeoo to expect all of the n eigeovalues of A to converge Co 

eigenvelues of A. Furthermore, for thezxi reel (the usual caae).~is 

reel but not eymmetric and ceo. have peirs of complex conjugate 

eigenvelues vhich’do oat correspond to my of the (real) eigenvaluee of 

e aelf adjoint Sturm-Liouvllle operator. As II result, only e subset of 

the i-s may sctually converge to eigenvalues of A. Ewever. when this 

subset is properly ordered, we find that i +A where 11 < A2 < . . . < 
3 j 

h,. ere the II- < II lowest eigenvalues of A. These i-s are easy to pick 

out of the complete set (i) because of their rapid eoovetgence and 

subsequent stability es o is increesed. 

In Ieble I. I Illustrate the remarkable power of Calogero’s method 

using the Bessel functions Jr(jr nr) for r oo [O.l] with jr,* the 0th 

zero of J,(r$).I impose the boundary condditiona Ji = 9, T -. 0. and 

Jl(jl.“) - 0 explicitly hy writing the Beseel function es 

(14) J,( jr,*=) - =‘(l-=2)w~(=2). 

change to L - r2 es a new variable. rod obtain no equation for Y of the 

form in eq. (13) with 

(15) 22 - -4x* 1 
L ,I - -4(t+L+1)A+ 8$:-E). ,“* - 4(1+9/(1-x) . -- 

k may be l een from Table I. the coovergeoce of the elgenvalue j. k to 
. 

j o.k - ‘~,kl’~ la extremely tepid. For evmple. jo l 10 eccurete to 
* 

wenty-w0 figure8 for 0 - 15. ale j *,lo im eccurete to 3.4% for 0 - 
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20 eveo though there are only No points to define each of rhe ten 

I**p* *f J*(j*,IOC). The reeults for jl,k and j2,k axe slnllar. 

I have also tested Calogero's method for the 

physically-lotecestfng problem of the radial Schradlnger equation with 

the Coulomb-plus- linear potential used to fit the~mass spectra of 

bound c: end b6 systems (charsonium and upsil~nlum)(~) 

(16) V(r) - - ; + br. 

The method I have used is appropriate for e large class of confining 

ioteractions(lo). It iovoloes extracting both the domioant expooentlal 

factor in the radial weve function for r -c m end the factor r' which 

appears for t * 0. and changing variables to elf~inate irratlonel 

powers of r in the resulting wave equation. Specifically, I write 

al(r) (LB 

(17) El(r) - exp(- $ ( mqb)l" r3"j 9 v(x), I - z&2, 

and apply Calogero's procedure to the equatloo for w(x) using o equally 

*paced points which extend beyond the (estimated) classical turning 

point. The resulta of the calculatloa for channonium ere given In 

Teble II. The ground stete (1s) energy for e 20 x 20 patrlx is 

accurete to (a ridiculous) 1 CV out of 0.36 GeV, while the 5S md 5P 

levels are accurete to 0.4% (1-O) and 0.1% (1-l). The calculatioo (end 

that in Table I) required 0.76 eec per L vslue on e CDC Cyber 175. and 

la l ufficieotly fast that ooe can contemplate adjustment of the 

potential point-by-point lo fitting the observed energies. 
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The SUCCESS of Caiogero-s method for diffecentiatlon and 

differential equations suggests that an 'iave~se~ method related to 

Lagrangian integration might be useful for numerical integration and 

the solution of integral equations. In the remainder of the paper I 

will develop a simple aatrix procedure for Lagranglan integration and 

sketch how it might be applied. My deriratlons will be given elaevhere 

In wrc detatl. 

I begIn with the expressions 

(18*) f(x) - 1, s(=‘) dx’. f(y) - 0. 

(18b) B(X) - g (x). 

The Lagrangiao matrix representation of the second equation is(*) 

(19) g-Zf* f, 
a -- 

- ‘(r,)/“,(x,). 

tith g(x) = (v.(x). g). The oatrfx&ls singular and cannot be inverted - - 

la l q. (19) to obtain the integral I from g. IO particulars 

annihilates the const~lnt vector I (0) . -4. (6)s so has a vanishing 

determinant (zero La in fact the o-fold-degenerate eigenvalue of 2). 

Bowever. 2 can be Kitten as 

0 0 
(20) 2-L -‘a- 0 i A- 

IrkI 

where the matrices L and R are nonsingular. 
- - 
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(*I) L-[p-# * q&f]. 

*, E nj(xj). j - l,... n, end the (n-1)x(11-1) m&x@ the 

restriction of 2 to the indicated black, 

(22) tij -3,. i.j - 2 ,... n. 

The nxatrix i Is invertible end i-’ is the matrix analog of the 

integral operator id eq. (Ma). Thus. mltiplylng eq. (19) byLi, 

using the representation for2 in eq. (20). md imposing the boundary 

conditioo_fl - 0 from eq. (188). one finds that q. (19) is 

equivalent to the (n-l)-dlmenaional equation 

L  ̂ . 

(23) g-Zf 
- mm 

vhere f - (9) , g - (;) , and 
- - 

(24) ; w g-1 9. --- 

Since the projection (n(x),f) giveu the Lagrange iatcrpolatloo 
- - 

polyaom.ial for f(x). cq. (24) and the boundary coadlcionLl - 0 give 

the integration formula (exact for polynomials g(x) rich degree G n-2) 

(25) f(x) - f _-- 
Xl 

i&r’) dx’ = C&t). :-‘;;,. ~,-K(~,)/=,(x,)- 

This is an open-endpoint formula; g II) needed only at the n-l points 

?-..a, while i irwoLves all r~ point* xl,.-.h- 
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By taking differences of the expression in eq. (25) for different 

choices of x E (x,} I obtain the formulas 

(268) j =‘+M g(x’)dr’ - 
3 

i 2(AMm,k- Al,k) g(s). 
w 

(26b) *J.k - Xj(‘j)(~)j,‘/+,$ 

Eq- (26a) Is the usual Lagrange lntegratioo formM5) and has an 

error term R, bounded by 

(27) l\l < & aaxlg(~-‘)(y)w. XI c y < Xlb, n - ‘Iti - Xj’ 

Wore generally for arbitrary a and b Lo the interval [x1,%1, 

(28) ,: g(+‘x = (i(b) - :(a.), 2-l i). 

The advantage of the present approach to Lagrdngiao integration Is 

Lts flexlbllity. It is easy ueing matrix methods to change a and the 

selected points (xj} during a calculation.Thus for equally spaced 

poiote. cq. (28) fa a Nevton-Cotes lntegratlon formula exact for 

polynomials of degree ‘ n-2, vhlle for a-x1=0,&1, and x2,. . .xn the o-l 

zero* of P,-1(2rl). eq. (28) g1vee Gauss - integration formula and is 

exact for polynomials of degree ‘ 2~1-3. Furthermore, the rate of 

corrvergence of the Lagrangian rpproriaatlos to the exact integral can 

be greatly enhanced by iocreeslag n ae the number of points used lo the 

Integration ie increased. Por cramplc, the value of N(x) 

-I; (alnx/r)dx ia given correctly to lxlO-5 by eq. (26a) with n - 17. 

equally apaced pointa (I)[-l.O,....lO) (11 point N-ton- Gates 
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integration) and to < 1x10-Lo for a - 20; to obtain the same ac:uracy 

vith Simpsoo's rule requires -25 (-435) points. some pre11minary 

calculations also show that these results can be quite useful in the 

rmmerfcal solution of integral equations. 
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TABLE I 

Zeros of the Bessel functions calculated using Calogero's method. 

Results given to more than 10 figures are accurate to +l in the Last 

figure given. 

k j o,k' 
" - 15 jovk. n - 20 

1 2.40482 55577 2.40482 55576 95772 76862 17 

2 5.52007 81103 5.52007 81103 86310 65 

3 8.65372 79129 8.65372 79129 1 . . . . . . 11012 

4 11.79153 44391 11.79153 4468 11.79153 44390 1429 

5 14.93091 77086 14.93093 5 14.93091 77085 

6 18.07106 39679 18.0732 18.07106 4005 

7 21.21163 66299 21.0256 21.21164 66 

8 24.35247 i5308 24.98 24.35309 

9 27.49347 91320 27.60 27.515 

10 30.63460 64684 30.74 
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TABLE II 

The energies En a of the lowest states fn charmonium calculated using 

calogero's method for the potential V(r) - -a/r + br, a = 0.49, 

b = 0.17 cev2, P c - 1.35 Gev(g). 

N 

E n o (Cm E n 1 (Ce-0 

-1 “Eracr”(9) 2w20.r~x=9 Gev mact*y9) 20x20, rma;12G?v -1 

1 0.3643 0.3643 0.7720 0.7720 

2 0.9505 0.9505 1.2292 1.2292 

3 1.3862 1.3862 1.6155 1.6155 

4 1.7592 1.7594 1.5605 1.9606 

5 2.0948 2.1035 2.2773 2.2797 


